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Abstract: An enantioselective route to the C(1) -C(6) erythronolide unit 10 is described, involving the 

dioxanone-to-dihydropyran enolate Claisen rearrangement (7 + 8), regio- and stereoselective hydro- 

boration to give 9a, and reductive fragmentation of the heterocyclic template (9c + 10). 

The stereocontrolled synthesis of polysubstituted dihydropyrans via a variant of the enolate Claisen 

rearrangement has recently been described.1 This process of dioxanone-to-dihydropyran conversion is 

generalized in eq. 1 for one stereochemical series. The all-& orientation of the substituents at the three 

sps-carbon stereocenters in the product suggested that stereoselective electrophilic addition to the olefin 

residue could be effected to give a tetrahydropyran with five contiguous asymmetric carbons in the ring. 

The realization of this, followed by a cleavage of the heterocyclic template, has provided an efficient 

route to a synthon for the C( 1) -C(6) portion of the erythronolide B aglycone (1) as described herein.2 

The correlation of the macrolide subunit via the seco acid 2 with the appropriate tetrahydropyran 

system 3 is shown in eq. 2. The heterocycle 3 contains the C(2)-C(5) stereocenters in their correct 

absolute configurations, a P-halo ether for the reductive fragmentation of the C(l)-0 bond, and an 

+Research Fellow of the Alfred P. Sloan Foundation; recipient of a National Science Foundation 

Presidential Young Investigator Award. 

449 



450 

incipient methyl ketone at C(61.3 This ultimately unnecessary C(6) stereocenter serves to guide the 

selective introduction of stereochemistry at the C(5) -C(l) sites, as detailed in Scheme I.4 

The known derivative5 of ethyl ( +)-lactate was subjected to a one-pot reduction/Grignard addition 

procedure to afford a 4:l mixture of allylic alcohols 5a and 5c in 89% yield. Swern oxidation6 of this 

mixture gave the enone 5b (93%) which was subjected to reduction at -78°C with Zn(BH& in Et207 to 

give 5c in 89% yield with 2O:l diastereoselectivity .s This two step oxidationf’chelation-controlled” 

reduction thus reversed the configurational outcome of the Dibal/Grignard addition with greatly 

enhanced selectivity, and dictated the choice of lactate starting material stereochemistry. 

The elaboration of 5c to a dioxanone enolate Claisen substrate mirrored the previously published 

procedure.1 0-alkyIation with the carboxylate of bromoacetic acid, conversion to the t-butyl ester, and 

ozonolysis gave the methyl ketone 6c in 71% overall yield. Treatment of 6c with 2.2 eq of the Grignard 

reagent derived from trans-propenyllithiumg and anhydrous MgBr$o in Et20 gave, after lactonization 

with 30 mol % trifluoroacetic acid in refluxing benzene, the dioxanone 7 (mp 55 - 57°C) in 65% overall 

yield.11 Thermolysis of the silyl ketene acetal derived from 7 in the manner previously describedrY 

Scheme I 
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(al i-BuzAlH, Et20, -78”C, 1 h; H2C =C(CH$MgBr, THF, -78 -+ 25°C 3 h. (b) (COCB2, CH2C12, DMSO 
E&N, -60 * 25°C. (cl Zn(BH&, EtnO, -78°C. 40 min. (d) NaH (3 eq), BrCHzCOzH,THF, reflux 15 h. (ej 
r-BuOH, CH2Cl2, DMAP, DCC, 0 --, 25”C, 2 h. (flO3,l:l CH2C12/MeOH, -78°C; Me& -78 --* 25X’. (g) 
trans-CH$H=CHMgBro, EtzO/PhH, -78°C. (h) 30 mol % CFsC02H, PhH, reflux, 7 h. (i) 2.0 eq LDA 
THF, MesSiCL’EtaN, -78 C; PhCHs, llO”C, 4 h; HaO@; CHsN2, Et20. (j) &He l THF (10 eq) THF -78 L 
0°C; aq NaOH, H202. (kl LiAlH4, EtaO, -78°C 30 min. (1) PhsP, PhH, pyridine, 12. (m) Zn’ dust,‘DME, 
reflux, 36 h. 
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afforded, after hydrolysis and esterification, the dihydropyran 8 in 77% yield. Thus the rearrangement 

resulted in the coupling of the designated sites in dioxanone 7 to give the C-C bond signified in 8, with 

the vicinal stereochemistry shown. 

Treatment of the dihydropyran 8 with excess diborane in THF at 0°C gave, after standard oxidative 

work-up, the hydroboration product 9a in 72% yield; no other stereo- or regioisomers could be detected. 

Thus the expected steric protection of the p-face of the trisubstituted olefin in 8 was fully enforced.13 

Reduction of the methyl ester to the primary alcohol 9b (LiAlH4, EtzO, -78°C 90%) and conversion to 

the iodide 9c (PhzP, 12, pyridine, PhH, reflux, 72%)14 set up the cleavage of the heterocyclic template. 

This reductive fragmentation was cleanly accomplished with activated zinc dust15 in refluxing dimeth- 

oxyethane to give the erythronolide C(1) -C(6) synthon 10 in 89% yield.16 

The conversion of the ethyl L-(+)-lactate derivative 4 into the homochiral C(1) -C(6) synthon 10 

thus required thirteen steps which proceeded in 11% overall yield. Each of the four new stereocenters 

was introduced with r20:l diastereoselectivity. Application of this method to the production of 

C(7) - C(13) synthons for erythronolides A and B is in progress. 
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